

Zero Emissions Technology for Airport Snow Removal Equipment

Airport & Municipal Days 2024 | September 4-5, 2024 Dolf Strydom | VP Group Technology Airport | Aebi Schmidt Group

Agenda

- 1 The Platform for Airport Snow removal
- What are the alternatives to diesel powered Airport Snow removal?
- A practical evaluation of the technologies for the Application
- 4 Potential technology partners
- 5 Airport Infrastructure requirement for H2
- 6 Technology roadmap for H2 Airport Snow Removal
- 7 Battery Electric applications for Airport machines

1. Typical Application

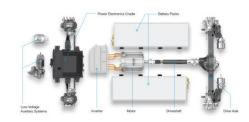
Focus for this Technology Update: Large Airport Snow Removal Equipment.

Alternative Fuels like HVO and Liquid Propane is available in Europe and North America.

European Market:

Schmidt Towed Jet Sweeper (TJS) with airport plow

North American Market:


MB5C Multi Tasking Equipment (MTE)

2. Applicable Zero Emissions Technology

Battery Electric and Hydrogen systems are the options available for low or zero emission technologies.

Battery Electric systems

Technical comments

Infrastructure

- Low Energy density
- Machine weight high
- Low temp. penalty in energy density
- Long recharge times
- 8 Machines require 4MW to charge in 3hrs
- Not supported by existing grid capacity

Hydrogen systems

Hydrogen Fuel Cell Electric (HFCE)

- Energy density 3x compared to diesel fuel by weight
- Energy Density 1/3 by volume compared to diesel
- Hydrogen delivery like diesel
- Generated on site through Electrolysis
- Is a by-product of oil and gas exploration and refinery

Hydrogen Internal Combustion Engine (HICE)

- HICE requires the rework of Industrial diesel engines to function
- Several Engine OEM are developing

3. Zero Emissions Technology: Practical Evaluation

Hydrogen systems are better than Battery Electric systems, based on sustainability, technical and business assessment.

Zero Emissions Technology Evaluation

	Criteria	Diesel (baseline)	Battery Electric systems	Hydrogen systems
Sustainability assessment	CO ₂ emission	1,620 kg	0 kg*	0 kg* (70% less NOx)
Technical assessment	Compactness	600 liter	12,800 liter	2,000 liter
	System Weight	516 kg	23,930 kg	191 kg
	Refueling time	20 min	4 hours	20 min
	R&D Effort	N/A	Long	Medium
	Cold weather	Good	Bad	Medium
	Required Infrastructure	Gas Station	Electric Grid	H ₂ Station
Business assessment	Cost	Low	High	Medium
	Customer acceptability	Baseline	Low	Good

Recommendation

The **team recommendation is hydrogen systems** as the midlong-term solution

Commentary

Even if battery weight is cut in half, system weight and infrastructure will still be a challenge.

Legend:

Favorable alternative to diesel

Worse than Diesel but still a viable option

Not viable for a plow application

^{*} Assuming creation from non-fossil fuels.

4. Potential Technology partners

Several OEMs developing Hydrogen ICE technology.

CAT

- Developing Hydrogen Engines
- Engine size C13D –
 Good match for SRE
- Time frame: Availability 2026

Volvo Penta

- Developing a Hybrid fuel,
 Hydrogen Diesel Option
- Target Engine D8 Low Power

Deutz

- Deutz TCG 7.8 H₂ available
- Engine generates 220kW/300hp

Cummins

- Developing Clean Hydrogen Engines
- X15 Feasible for SRE at 395kW / 530hp
- Published X15 engine production start -2027

4. Technology Partners for the On-Board Fuel system

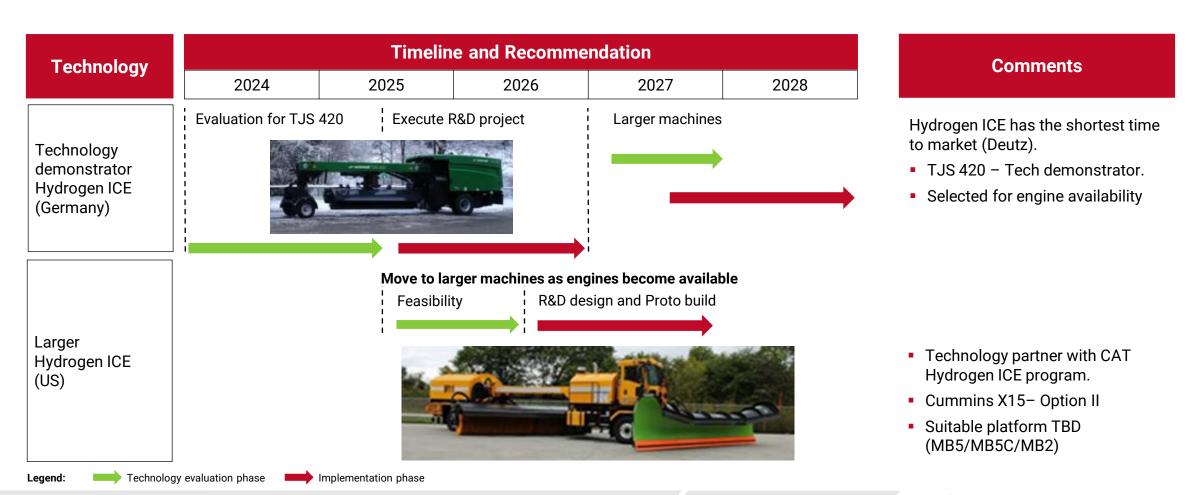
Several OEMs are offering Hydrogen Fuel system ICE technology for mobile applications.

Safety testing

5. Airport Infrastructure

There are several suppliers for Hydrogen Electrolyzer substations.

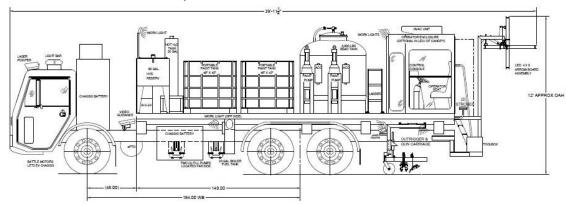
- ► Truck Refueling time 15 30min
- Generation throughout the year Eliminates peak demand
- ► Relatively small footprint 12.2m x 2.5m (40ft) container
- ➤ Scalable power consumption 50kW 500kW



On-Site Hydrogen Refueling

6. Zero-Emissions H₂ Technology Roadmap

Hydrogen Internal Combustion most suitable for airport snow removal. Market introduction dictated by engine availability.


7. Battery Electric Applications for Airport

Battery Electric energy systems work well when you do not need to push a snowplow.

Schmidt eAS 990 Airport Sweeper

MB Airless MAXI-1,000 A

Basic Description:

- Hopper Volume 9.5 m³
- ePTO Sweeping unit
- Battery capacity 500 kWh +
- Sweep speed 20 km/h

Basic Description:

- Battery: 400 kWh
- Paint 6.5 hrs @ 8 km/h
- Striping range: ± 48 km
- Paint: 4 totes = 3,800 l
- Glass Beads: 4,000 kg
- Paint width: 1.2m
- Availability Q3 2025

7. Battery Electric Applications for Airport

Battery Electric energy systems work well when you do not need to push a snowplow.

Schmidt eASP Airport Sprayer

Basic Description:

- Volvo FM 62R Electric truck with ePTO interface
- 11,000 Liter capacity
- Spray speed up to 45 km/h
- Spray width: 24 m (up to 30 m)
- Availability Q4 2024
- Testing 2024/25 season at Avinor in Norway

Questions? Comments? Feedback?

Thank you for your time and interest!